Skip to main content

Kubernetes Resource Management: Define Resource Requests and Limits; Deploy Kubernetes Metrics Server, Verify Resource Usage with kubectl top

932 words·
Kubernetes Kubectl Kubernetes Metrics Server
Kubernetes-Components - This article is part of a series.
Part 4: This Article

Prerequisites
#

Kubernetes Metrics Server
#

Overview
#

  • The Kubernetes Metrics Server provides resource usage statistics like CPU & RAM, that can be queried by tools like kubectl top and used by the Horizontal Pod Autoscaler (HPA) to make decisions about scaling.

  • Resource requests and limits work regardless of whether the Kubernetes Metrics Server is deployed.


Download Manifest
#

# Download official metrics server YAML manifest from SIGs (Kubernetes Special Interest Groups)
wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

Edit Manifest
#

Note: It’snecessary to add the --kubelet-insecure-tls option in the “Deployment / spec.containers.args” section.

# Edit the manifest
vi components.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      containers:
      - args:
        - --cert-dir=/tmp
        - --secure-port=10250
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        - --kubelet-insecure-tls  # Add this line
        image: registry.k8s.io/metrics-server/metrics-server:v0.7.2
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 10250
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          initialDelaySeconds: 20
          periodSeconds: 10
        resources:
          requests:
            cpu: 100m
            memory: 200Mi
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
          seccompProfile:
            type: RuntimeDefault
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100

Deploy the Metrics Server
#

# Deploy the metrics server
kubectl apply -f components.yaml

# Shell output:
serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

Verify the Metric Server Resources
#

# List deployments: Wait till the "metrics-server" deployment is ready
kubectl get deployments --namespace kube-system

# Shell output: (Wait till ready)
NAME              READY   UP-TO-DATE   AVAILABLE   AGE
cilium-operator   1/1     1            1           74d
coredns           2/2     2            2           74d
metrics-server    1/1     1            1           21s



Deployment Resource Management
#

Overview
#

Resource Request:

  • In the pod specification it’s possible to optionally define how much of each resources like CPU & RAM a container needs

  • The kube-scheduler uses this information to decide which node to place the Pod on. If a node does not have at least this much CPU or RAM available, the pod will not be scheduled on that node.

  • The kubelet also reserves at least the request amount of that system resource specifically for that container to use

  • If the node where the Pod is running has enough of a resource available, it’s possible and allowed for a container to use more resource than its defined request


Resource Limit:

  • The kubelet enforces those limits so that the running container is not allowed to use more of that resource than the defined limit

Deployment Example: Resource Requests and Limits
#

# Create manifest for the deployment
vi resource-management-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  name: resource-management-deployment
spec:
  replicas: 2
  selector:
    matchLabels:
      app: example-app
  template:
    metadata:
      labels:
        app: example-app
    spec:
      containers:
      - name: nginx-container
        image: nginx:latest
        resources:
          requests:
            memory: "64Mi"
            cpu: "250m"
          limits:
            memory: "128Mi"
            cpu: "500m"
# Deploy the manifest
kubectl apply -f resource-management-deployment.yaml

Deployment Details
#

  • resources.limits.memory: "128Mi" The container will be killed if it allocates more then 128Mi MB of RAM. Kubernetes will attempt to restart the container regarding on the pods restartPolicy.

  • resources.limits.cpu: "500m" The container will be throttled if it uses more then 500 millicores / half a CPU core.

CPU limit definition:

  • cpu: "1" 1 CPU core

  • cpu: ""500m" 500 millicores / half a CPU core


Verify Resource Requests and Limits
#

List pods:

# List pods in "default" namespace
kubectl get pods

# Shell output:
NAME                                              READY   STATUS    RESTARTS   AGE
resource-management-deployment-74bd69b985-4kb7h   1/1     Running   0          7s
resource-management-deployment-74bd69b985-qhmzg   1/1     Running   0          7s

List pod details:

# List pod details
kubectl describe pod resource-management-deployment-74bd69b985-4kb7h

# Shell output:
...
Containers:
  nginx-container:
    Container ID:   containerd://4766781731382231a9388806f97d906a9c848ce1f57159dc1d727ee9c15c2c1c
    Image:          nginx:latest
    Image ID:       docker.io/library/nginx@sha256:04ba374043ccd2fc5c593885c0eacddebabd5ca375f9323666f28dfd5a9710e3
    Port:           <none>
    Host Port:      <none>
    State:          Running
      Started:      Wed, 18 Sep 2024 09:42:53 +0000
    Ready:          True
    Restart Count:  0
    Limits: # Resource limits
      cpu:     500m
      memory:  128Mi
    Requests: # Resource request
      cpu:        250m
      memory:     64Mi
...

List Current Resource Usage
#

# Check the current usage of the pods CPU and memory
kubectl top pod resource-management-deployment-74bd69b985-4kb7h

# Shell output:
NAME                                              CPU(cores)   MEMORY(bytes)
resource-management-deployment-74bd69b985-4kb7h   0m           4Mi

Delete Deployment
#

# Delete the deployment
kubectl delete -f resource-management-deployment.yaml

Links #

# Official Documentation
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
Kubernetes-Components - This article is part of a series.
Part 4: This Article